For decades, scientists have sought to understand the anti-ageing effects of parabiosis, a technique in which researchers sew a young mouse and an old mouse together so that they share a circulatory system.
The hunt for the fountain of youth is back to square one—at least for those seeking it in blood. New findings cast doubt on research that attempted to explain why the muscles of an old animal can be rejuvenated with a dose of blood from a young animal.
For decades, scientists have sought to understand the anti-ageing effects of parabiosis, a technique in which researchers sew a young mouse and an old mouse together so that they share a circulatory system. The young mouse’s blood seems to rejuvenate the old mouse, regenerating its wasting muscles and restoring its cognitive abilities. On the basis of those results, at least one company is using blood plasma from healthy young people to treat patients with Alzheimer’s disease.
For GDF11, “You could imagine that when it came out last year that it helped muscle, it was quite a surprise,” says David Glass, executive director of the muscle diseases group at the Novartis Institutes for Biomedical Research in Cambridge, Massachusetts. “Did we miss something?”
Glass and his colleagues set out to determine why GDF11 had this apparent effect. First, they tested the and other reagents that Wagers’ group had used to measure GDF11 levels, and found that these chemicals could not distinguish between myostatin and GDF11. When the Novartis team used a more specific reagent to measure GDF11 levels in the blood of both rats and humans, they found that GDF11 levels actually increased with age—just as levels of myostatin do. That contradicts what Wagers’ group had found.
Wagers, however, stands by her findings. She says that although at first glance the Novartis group’s data seem to conflict with her team’s results, there could be multiple forms of GDF11 and that perhaps only one decreases with age. Both papers suggest that having either too much or too little GDF11 could be harmful, she says. She adds that the Novartis group injured the muscle more extensively and then treated it with more GDF11 than her group had done, so the results may not be directly comparable.
“We look forward to addressing the differences in the studies with additional data very soon,” Wagers says.
Rando expects that researchers will now investigate the finding that GDF11 affects the growth of neurons and blood vessels in the brain. “I’m not sure which result is going to stand the test of time,” he says.
see also:
No comments:
Post a Comment