Artificially boosting the body's immune response against cancer is the most exciting advance in the treatment of tumors in the past couple of years. But as the jam-packed sessions at a recent scientific conference in New York City made clear, a lot of questions remain to be answered before anyone can declare victory in the war on cancer. Among them: What is the best way to ? Will immunotherapy work for all sorts of people with all kinds of cancer or just for a ? Is there a way to make the treatments less dangerous or expensive?
It was standing room only for many of the presentations at the first , which took place from September 16 to 19.* Speaker after speaker started their talks by disclosing financial ties to a variety of companies ranging from pharmaceutical giants to their own start-ups. The audience consisted primarily of scientists and physicians. But sprinkled among the 1,400 attendees, in addition to the usual smattering of journalists, were a number of industry scouts and finance people seeking to glean the next big investment opportunity or joint project possibility.
The first thing you need to know about the researchers studying immunotherapy for cancer is that every one of them seemingly has a few patients who have responded extraordinarily well. Steven Rosenberg of the National Cancer Institute no doubt takes the prize in this category. In 1984, he treated a woman named who had metastatic melanoma (an aggressive type of with a survival rate of less than 10 percent after ten years). Taylor was the 81st patient to undergo the debilitating therapy and the first to respond successfully. Within a few months her tumors melted away and she remains alive and healthy today. Rosenberg—the keynote speaker at the conference—reports that his latest regimen is not as hard on patients and results in 20 percent of them experiencing "a complete and durable remission." That's about par for a lot of the immune therapies now being studied.
Investigators have developed several different methods for tweaking a patient's immune system so that it recognizes and attacks dangerous tumors more effectively than it otherwise would. Some of these therapies feature so-called monoclonal antibodies that interfere with cancer cells' ability to fool the immune system into ignoring them. Known as , these treatments so far appear to work best in melanoma and smoking-induced lung cancer.
And yet, several investigators reported on efforts to turn such cold tumors hot so they could then be targeted with immunotherapy. Padmanee Sharma, an immunologist at The University of Texas M. D. Anderson Cancer Center, for example, described a in which men with apparently aggressive prostate cancer were given hormone treatment prior to surgery in order to first kill a few of their cancer cells before their tumor is removed. Once these cells die, the various proteins and other compounds that are usually found inside them spill into the body. Somehow, this makes it easier for the immune system to pay attention and it starts sending immune cells to tackle whatever microscopic bits of tumor might be left elsewhere in the body after the operation. Unfortunately, as Sharma told the audience, their subsequent response to immune-boosting drugs was short-lived. She and her colleagues are pursuing several different ideas, however, to make it last longer.
Indeed, the idea that you don't have to kill all the cancer cells in a tumor to get the immune system going sparked a lot of interest at the conference. Ira Mellman, Genentech’s vice president of cancer immunology, wondered aloud whether "chemotherapy may in fact be, to some extent, immunotherapy." By killing a few cells, it may prime the immune system to respond better to later treatments. In some cases the release of cancer proteins jump-starts the immune response. In others a chemotherapy drug such as gemcitabine actually releases the brakes by temporarily .
Stanford University oncologist Ron Levy has taken this concept one step further by using low-dose radiation treatment to kill a few malignant cells in who had several visible tumors. Then he injected an experimental immunostimulatory compound directly into a single lesion in each of these patients. By doing so, he found he could lower the amount of drug he needed to trigger a reaction. Acting on a single tumor—which doesn't require as much medicine as trying to reach all the tumors in the body—was sufficient to trigger a general immune response.
Most of the patients in exhibited some kind of response; even tumors that had not been treated started to shrink in a few people. Generally speaking, it took six months to two years to see the changes. One 38-year-old man experienced a complete response, meaning all observable signs of the cancer disappeared throughout the body—an outcome that lasted more than a year. (A "complete response" is not necessarily the same thing as a cure because undetectable amounts of cancer might still be lurking somewhere in the body.) "We're trying to make this response more common and more durable," Levy said. His next step is to try to combine this method for stimulating the immune system with monoclonal antibodies that prevent tumors from shutting the immune system down (given at 1/20th of the usual dose). "We hope to eliminate toxicity by going local and lowering the effective dose," he told meeting participants. Although Levy has started treating at least one person with this newer combo approach, he was not yet ready to share results.
Investigators presented several other promising immunotherapies at the conference but no roundup would be complete without mentioning the so-called , many of which have received orphan drug or "breakthrough status" by the FDA in the past 18 months.
No comments:
Post a Comment