The wonder material. It’s just one atom thick but 200 times stronger than steel; extremely conductive but see-through and flexible. Graphene has shot to fame since its discovery in 2004 by UK-based researchers Andre Geim and Konstantin Novoselov, for which the University of Manchester pair were awarded the in physics.
Fast progressAndrea Ferrari, director of the Cambridge Graphene Centre at the University of Cambridge, UK. He points out that for the first few years after graphene’s discovery in 2004, most research was restricted to academia, and was fundamental physics. ‘It was only around 2009/2010 that applied university departments and companies really started taking notice of this material – we are just four years in.’
There has been a surge in graphene-related patents over the last few years – the total number published more than doubled from 2012 to over 9000 in 2014. More than three quarters of these were filed in China (47%), Korea (13%) or the US (18%).
Closer to home, graphene R&D has attracted several hefty dollops of public investment. In the UK this year, the £61 million Manchester-based (NGI) opened with £38 million from the UK government. And the initiative was one of the big winners at the European commission’s future and emerging technologies competition, and will receive €1 billion (£730 million) from the Horizon 2020 budget over the next 10 years, which will support both fundamental and applied research. To date, the project has more than 140 partner organisations in 23 countries, and it recently released its , which Ferrari is coordinating.
he bulb’s developers have been somewhat secretive about how the technology works, saying only that the bulb contains a filament-shaped LED coated with graphene, whose superior conductivity makes the whole thing around 10% more efficient, as well as longer lasting. It is also cheaper to manufacture, and boasts ‘more sustainable’ components, says of the University of Manchester, one of Graphene Lighting’s directors. ‘We expect these to go to market by the end of this year,’ he says. ‘We’ve got a supply chain in place.’
The Graphene Flagship’s roadmap predicts more and more graphene-infused inks and materials will start hitting the market within the next few years, and some companies have started producing them already. Composites manufacturer has incorporated graphene nanoplates into epoxy resins and carbon fibre reinforced polymers, and are currently collaborating with yacht racing team to try and build stronger-but-lighter vessels and develop performance-enhancing coatings.
US sports equipment manufacturer caused a stir in 2013 with a tennis racquet which uses a graphene-enhanced polymer in the shaft, shifting the weight distribution. This gives a racquet with the same ‘swing weight’ that is 20% lighter overall, the company claims. The product has been a big success for Head, and the company’s patent also covers the material for use in other sports equipment, including skis and golf clubs. ‘This is really going very fast, and this is where I think it’s really surprised the market,’ says Bailey.
‘There used to be about 100 companies involved in graphene production two years ago ... now it’s about 300,’ says Terrance Barkan, director of the Graphene Council, a network for those involved in research, development and production of graphene.
While this growth is a promising sign in many ways, Barkan warns it can also create problems. ‘Every day there’s a new company that purports to be producing graphene, but there are absolutely no universally agreed standards for this material ... people are calling single walled nanotubes "rolled-up graphene", or you’ve got material that is single-layered or multi-layered and it’s all being referred to as graphene. Unless you’re involved in the use of graphene on a regular basis, it is easy to get confused by all the different terminology.’
There have even been cases of inconsistency from within the same supplier, says Barkan, leading to buyers getting batches of material with slightly different properties. This creates a lot of confusion, and makes it very risky for companies to start substituting traditional, well-characterised materials with graphene in their products.
To address this, the Graphene Council is working on creating a set of standards that can be used to characterise all the different variations on graphene across the industry. This is also an area the Graphene Flagship has been active in, and last year researchers from across Europe developed a ‘family tree’ to sort and and related materials.
‘It’s quite difficult at the beginning of a field to actually have the correct idea of where the "killer application" is going to be,’ Ferrari says. To glimpse what may happen further down the line, he says we need to look at the histories of similar materials. For example, diamond-like carbon – amorphous carbon that displays some properties similar to diamond but does not have a crystalline structure – was first developed in the 1970s, and at that time, like graphene, it was suggested the material could be used in transistors.
‘But no functional transistor made with diamond-like carbon has been sold in the past 50 years,’ Ferrari says. ‘On the other hand, this material has been totally successful in other areas – every single computer hard disk in the world would not function without the layer of diamond-like carbon on the top. At the moment there are a billion computers like this being produced every year ` but of course no one in 1970 had any idea what was going to be the killer application 40 years later.’
At the moment nobody knows what graphene’s killer application will be, but many of its properties point to its potential in electronics. Much of Ferrari’s research has been focused on developing flexible electronics, making use of graphene as a conductor that is transparent, bendy and thin. In partnership with Cambridge-based company , Ferrari’s group produced the first , an e-reader-style reflective display which uses flexible graphene electrodes in place of metals and bendy plastic instead of glass for the screen.
‘If you’re going round with a bag of graphene trying to find an application for it it’s a tough call,’ Harper says. ‘If you can find a way of using graphene to do something that nobody else can do then you’ve got a business.’
One area in which Harper thinks graphene materials show particular promise is water purification. He recently founded UK-based company , which has licensed graphene oxide membrane technology developed at the University of South Carolina, US. The water filtration membranes are made by coating a polyamide substrate with flakes of graphene oxide, which overlap and wrap around the polyamide fibres to ‘mimic the mucus layer on top of fish scales’, says Harper. When a mixture of oil and water is exposed to the membrane, the graphene oxide flakes trap water inside the structure, creating hydrophilic pockets that repel the oil. This makes the membrane very resistant to fouling, which is a common problem with most purification membrane technology.
Another company he is involved with, , is trying to design the perfect heater. ‘Using printable graphene inks we’ve come up with heaters that can be moulded into different shapes that can be integrated into the fabric of buildings,’ Harper says. Initial tests suggest combining the technology with control systems that can modulate the heating in each room of a house could achieve energy savings between 25% and 70%, depending on how well insulated the rest of the house is. ‘We can come up with a solution that can keep heating costs down 50–60%,’ says Harper.
Chemistry World. The article was
see also:
No comments:
Post a Comment