A molecule related to the illegal drug teams with an enzyme to mop up alcoholic effects in mice
February 23, 2015 | |
The added molecule safrole (purple) sits inside the ALDH3A1 enzyme (blue), making the compound better able to bind and break down alcohol products in the blood. (The codes refer to amino acids that affect which molecules fit into the enzyme.)
Now Stanford University researchers have found a novel way to pair two small chemicals to reduce this risk. But one of them, unfortunately, is toxic and also can be used to make the illegal and dangerous drug, ecstasy. So scientists are searching for a safe substitute that can take advantage of this powerful pairing approach, they report today in .
Usually an enzyme called limits the harm acetaldehyde causes by quickly converting it to acetic acid, vinegar’s key ingredient. About 560 million Asians have a mutation in the gene for ALDH2, however, and this mutated enzyme does not work. So acetaldehyde builds up. The result is that such people get more intoxicated and when drinking. Acetaldehyde is also ranked as a group 1 carcinogen by the International Agency for Research on Cancer and when it stays in the body longer it raises the cancer risk for these people. “I carry this mutation,” says Stanford University molecular biologist Che-Hong Chen. “So do many of my friends.” Last week, he noted that “now it’s Chinese New Year and everybody’s drinking. If you go to Taiwan you see a lot of red faces, and they continue to drink a lot. That’s actually very dangerous.”
Chen is part the Stanford team, led by Daria Mochly-Rosen, which found that a chemical called safrole can recruit a completely different enzyme to the breakdown task, replacing the ineffective mutant. Chen compares acetaldehyde with a foot, and enzymes to shoes. Normal ALDH2 is a well-fitting shoe but mutant ALDH2 is a broken shoe that cannot fit the acetaldehyde foot at all. The body does make a related shoe, an enzyme known as , but it is normally much too large to hold acetaldehyde within it. Adding safrole, however, is like stuffing the toe of this new enzyme shoe with paper. This keeps acetaldehyde snugly inside ALDH3A1, giving the enzyme time to break down the alcohol product and move it to its vinegary destiny.
Chen and Mochly-Rosen tested safrole alongside another compound . They gave them to “wild-type” mice with fully working ALDH2 and to mutant mice with a defective version of the enzyme. Some mice got one or other of the two compounds, some received the combo and some were given nothing. The scientists then gave the wild-type animals alcohol equivalent to a human binge-drinking session and the mutants about two thirds as much.
They are quick to caution: Safrole cannot be used in people, in part because it is toxic and carcinogenic. Its sale is also restricted because a few chemical changes can turn it into . Chen doubts MDMA itself would work, in case anyone is foolish enough to try it “The requirements for the fit are very specific,” Chen says. “It would also be very dangerous.” (Ten students and two visitors at Wesleyan University in Connecticut were , two of them in critical condition, after taking a version of MDMA.)
No comments:
Post a Comment