For decades, paleontologists’ only fossil link between birds and dinosaurs was archaeopteryx, a hybrid creature with feathered wings but with the teeth and long bony tail of a dinosaur. These animals appeared to have acquired their birdlike features — feathers, wings and flight — in just 10 million years, a mere flash in evolutionary time. “Archaeopteryx seemed to emerge fully fledged with the characteristics of modern birds,” said , a paleontologist at the University of Bristol in England.
To explain this miraculous metamorphosis, scientists evoked a theory often referred to as “hopeful monsters.” According to this idea, major evolutionary leaps require large-scale genetic changes that are qualitatively different from the routine modifications within a species. Only such substantial alterations on a short timescale, the story went, could account for the sudden transformation from a 300-pound theropod to the sparrow-size prehistoric bird .
Sophisticated new analyses of these fossils, which track structural changes and map how the specimens are related to each other, support the idea that avian features evolved over long stretches of time. In research published in last fall, a paleontologist at the University of Edinburgh in Scotland, and collaborators examined fossils from coelurosaurs, the subgroup of theropods that produced archaeopteryx and modern birds. They tracked changes in a number of skeletal properties over time and found that there was that distinguished birds from other coelurosaurs.
Like other bird features, diminishing body size likely began long before the birds themselves evolved. A study published in last year found that the began much earlier than scientists had expected. Some coelurosaurs started shrinking as far back as 200 million years ago—50 million years before archaeopteryx emerged. At that time, most other dinosaur lineages were growing larger. “Miniaturization is unusual, especially among dinosaurs,” Benton said.
That shrinkage sped up once bird ancestors grew wings and began experimenting with gliding flight. Last year, Benton’s team showed that this dinosaur lineage, known as paraves, was shrinking than other dinosaur lineages were growing. “Other dinosaurs were getting bigger and uglier while this line was quietly getting smaller and smaller,” Benton said. “We believe that marked an event of intense selection going on at that point.”
Baby FaceArkhat Abzhanov, a biologist at Harvard University, was elbow deep in alligator eggs. Since alligators descend from a common ancestor with dinosaurs, they can provide a useful evolutionary comparison to birds. (Despite their appearance, birds are more closely related to alligators than lizards are.) Abzhanov was studying alligators’ vertebrae, but what struck him most was the birdlike shape of their heads; alligator embryos looked quite similar to chickens. Fossilized skulls of baby dinosaurs show the same pattern—they resemble adult birds. With those two observations in mind, Abzhanov had an idea. Perhaps birds evolved from dinosaurs by arresting their pattern of development early on in life.
To test that theory, Abzhanov, along with l, a paleontologist at the American Museum of Natural History in New York, , then a doctoral student in Abzhanov’s lab, and other colleagues, collected data on fossils from around the globe, including ancient birds, such as archaeopteryx, and fossilized eggs of developing dinosaurs that died in the nest. They tracked how the skull shape changed as dinosaurs morphed into birds.
Over time, they discovered, and the eyes, brain and beak grew. “The first birds were almost identical to the late embryo from velociraptors,” Abzhanov said. “Modern birds became even more babylike and change even less from their embryonic form.” In short, birds resemble tiny, infantile dinosaurs that can reproduce.
This process, known as paedomorphosis, is an efficient evolutionary route. “Rather than coming up with something new, it takes something you already have and extends it,” said , a developmental biologist at the University of California, Berkeley.
Birth of the Beak
One of Abzhanov’s particular interests is the beak, a remarkable structure that birds use to find food, clean themselves, make nests, and care for their young. He theorizes that birds’ widespread success stems not just from their ability to fly, but from their amazing diversity of beaks. “Modern birds evolved a pair of fingers on the face,” he said.
Armed with their insight into bird evolution, Abzhanov, Bhullar and collaborators have been able to dig into the genetic mechanisms that helped form the beak. In new research, published last month in , the researchers show that just a few small genetic tweaks can morph a bird face into one that resembles a dinosaur.
While most other dinosaur lineages were growing, the line that gave rise to birds began to shrink nearly 200 million years ago. Monolophosaurus by Jordan Mallon, , and In modern birds, two bones known as the premaxillary bones fuse to become the beak. That structure is quite distinct from that of dinosaurs, alligators, ancient birds and most other vertebrates, in which these two bones remain separate, shaping the snout. To figure out how that change might have arisen, the researchers mapped out the activity of two genes that are expressed in these bones in a spectrum of animals: alligators, chickens, mice, lizards, turtles and emus, a living species reminiscent of ancient birds.They found that the reptiles and mammals had two patches of activity, one on either side of the developing nasal cavity. Birds, on the hand, had a much larger single patch spanning the front of the face. The researchers reasoned that the alligator pattern could serve as a proxy for that of dinosaurs, given that they have similar snouts and premaxillary bones. The researchers then undid a bird-specific pattern of gene expression in chicken embryos using chemicals to block the genes in the middle of the face. (For ethical reasons, they did not allow the chickens to hatch.)
The result: The treated embryos developed a more dinosaurlike face. “They basically grew a bird embryo back into something that looked more like the morphology of extinct dinosaurs,” said , a paleontologist at the University of Texas, Austin, who has previously collaborated with Abzhanov.
Specifically, small changes in how genes are regulated likely drove both the initial creation of the beak, which evolved over millions of years, and the diverse shape of bird beaks, which can change over just a. “We show that simple regulatory changes can have a major impact,” Abzhanov said.
, whose mission is to enhance public understanding of science by covering research developments and trends in mathematics and the physical and life sciences.
No comments:
Post a Comment